Yazar "Anvari-Moghaddam, Amjad" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A comprehensive review on electric vehicles smart charging: Solutions, strategies, technologies, and challenges(Elsevier, 2022) Sadeghian, Omid; Oshnoei, Arman; Mohammadi-ivatloo, Behnam; Vahidinasab, Vahid; Anvari-Moghaddam, AmjadThe role of electric vehicles (EVs) in energy systems will be crucial over the upcoming years due to their environmental-friendly nature and ability to mitigate/absorb excess power from renewable energy sources. Currently, a significant focus is given to EV smart charging (EVSC) solutions by researchers and industries around the globe to suitably meet the EVs' charging demand while overcoming their negative impacts on the power grid. Therefore, effective EVSC strategies and technologies are required to address such challenges. This review paper outlines the benefits and challenges of the EVSC procedure from different points of view. The role of EV aggregator in EVSC, charging methods and objectives, and required infrastructure for implementing EVSC are discussed. The study also deals with ancillary services provided by EVSC and EVs' load forecasting approaches. Moreover, the EVSC integrated energy systems, including homes, buildings, integrated energy systems, etc., are reviewed, followed by the smart green charging solutions to enhance the environmental benefit of EVs. The literature review shows the efficiency of EVSC in reducing charging costs by 30 %, grid operational costs by 10 %, and renewable curtailment by 40 %. The study gives key findings and recommendations which can be helpful for researchers and policymakers.Öğe Network hardening and optimal placement of microgrids to improve transmission system resilience: A two-stage linear program(Elsevier, 2022) Jalilpoor, Kamran; Oshnoei, Arman; Mohammadi-Ivatloo, Behnam; Anvari-Moghaddam, AmjadThis paper aims to develop a linear two-stage optimization problem based on an attacker-defender resilient planning (AD-RP) model to improve the power system’s operational and infrastructural resilience in the face of low-probability high-impact events. In the developed model, attackers are natural phenomena that can cause the most severe damage to system performance, and defenders are actions that minimize system vulnerabilities. In the first stage, a stochastic model depending on Monte-Carlo simulation is developed to present a new index for selecting the most vulnerable transmission system components. This index is designed based on combining the worst possible case of attack, disaster statistical analysis, system structure and fragility curves. In the second stage, as defense operations, the hardening of vulnerable lines and microgrids placement in the proper places are carried out considering investment budget constraints. Minimizing load shedding and ensuring the resilience of the transmission network are the main objectives behind the second stage. In this regard, a comprehensive metric for the evaluation of the transmission system resilience is introduced. Thanks to a mixed-integer programming problem, the effectiveness of the proposed AD-RP model in increasing system resilience is demonstrated in the IEEE 30-bus and 118-bus test systems.Öğe Optimal scheduling of a self-healing building using hybrid stochastic-robust optimization approach(Institute of Electrical and Electronics Engineers Inc., 2022) Akbari-Dibavar, Alireza; Mohammadi-Ivatloo, Behnam; Zare, Kazem; Anvari-Moghaddam, AmjadThis article provides a two-stage robust energy management method for a self-healing smart building that can handle contingencies that occur during real-time operation. Aside from an electrical link with the distribution network, the smart building is equipped with a diesel generator and photovoltaic solar power generating systems. The energy management system should be smart enough to plan different resources based on the situation. At first, bilevel programming identifies critical faults for affected components based on mean time to repair. After identifying major failures, the faults are described in operational scenarios, and a twostage hybrid robust-stochastic programming technique is used to determine the bid/offer in day-ahead and real-time energy markets, in which stochastic programming is responsible for considering the uncertainty of faults, and the robust optimization approach is used to cope with the uncertainty of real-time market prices. After linearization, the final optimization is modeled as mixed-integer linear programming in the GAMS optimization package. For the studied smart building, the daily operational cost is expected to increase from $ 25.794 (for the deterministic case) to $ 28.097 (for the most conservative case) due to the uncertainty of real-time market prices.Due to power shortages caused by the failure of components, the total expected not-supplied load is 6.72 kW (2.53%). A comparison between naive and self-healing scheduling indicated that naive energy management will charge an additional $ 2.75 without considering the probability of components failures under the deterministic case.Öğe Photovoltaic array reconfiguration under partial shading conditions for maximum power extraction: A state-of-the-art review and new solution method(Elsevier Ltd, 2022) Rezazadeh, Sevda; Moradzadeh, Arash; Pourhossein, Kazem; Akrami, Mohammadreza; Mohammadi-Ivatloo, Behnam; Anvari-Moghaddam, AmjadNon-uniform irradiance due to partial shading conditions (PSCs) reduces the power delivered by the photovoltaic (PV) cell. The output power reduction in the PV arrays directly depends on the shading pattern and type of array configuration which is selected. So far, many dynamic and static reconfiguration methods have been used for maximum power point tracking under PSCs in the PV arrays. However, most conventional methods suffer from some major problems such as the need for additional equipment and sensors, complex wiring, the use of expensive sensors, production of complex switching matrices, high costs, and inability to reconfigure PV arrays with very small, large, and non-square sizes. Accordingly, this paper, after reviewing the dynamic and static PV array reconfiguration methods, presents a novel static-based technique called 8-Queen's for reconfiguring the PV modules corresponding to the Total-Cross-Tied (TCT) inter-connection PV array. The 8-Queen's technique has a great ability to apply on high dimensions and rectangular shapes PV arrays and is based on the movement of 8 queens on the chessboard so that none of the queens can attack the others. The effectiveness of the suggested method is expressed by implementing it on 7 cases of the TCT PV array in different sizes and various PSCs. In a comparative scenario, the performance and effectiveness of the proposed 8-Queen's technique are evaluated compared to other conventional methods. Indicators of global maximum power point (GMPP), fill factor, power efficiency, and mismatch losses evaluate the results of the employed methods. The evaluation of results represents the effectiveness of the 8-Queen's technique compared to other used methods. In addition, the performance evaluation of the proposed technique in real-world PV arrays is performed by modeling a sample PV array taking into account measurement errors. The results in this step also show that the proposed technique can also provide acceptable performance for solving problems related to maximum power point tracking under PSCs in PV systems.