Yazar "Adebisi, Bamidele" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Energy-Per-Bit Performance Analysis of Relay-Assisted Power Line Communication Systems(Institute of Electrical and Electronics Engineers Inc., 2018) Rabie K.M.; Adebisi, Bamidele; Gacanin H.; Yarkan, SerkanThis paper provides a comprehensive analysis of the energy efficiency performance for different relaying schemes over the non-Gaussian power line communication (PLC) channel. Specifically, amplify-and-forward (AF), decode-and-forward (DF), selective DF (SDF) and incremental DF (IDF) relaying systems are investigated. For a more realistic scenario, the power consumption profile of the PLC modems is assumed to consist of both dynamic and static power. For each system, we derive accurate analytical expressions for the outage probability and the minimum energy-per-bit performance. For the sake of comparison and completeness as well as to quantify the achievable gains, we also analyze the performance of a single-hop PLC system. Monte Carlo simulations are provided throughout this paper to validate the theoretical analysis. Results reveal that AF relaying over the non-Gaussian PLC channel does not always enhance the performance and that the IDF PLC system offers the best performance compared to all other schemes considered. It is also shown that increasing the channel variance, which is related to the PLC network branching, and impulsive noise probability can considerably deteriorate the system performance. Furthermore, when the end-to-end distance is relatively small, it is found that the single-hop PLC approach can perform better than AF relaying. © 2018 IEEE.Öğe Two-Stage Non-Orthogonal Multiple Access over Power Line Communication Channels(Institute of Electrical and Electronics Engineers Inc., 2018) Rabie, K.M.; Adebisi, Bamidele; Tonello, A.M.; Yarkan, Serkan; Ijaz, M.Non-orthogonal multiple access (NOMA) has recently been proposed for dual-hop cooperative relaying power line communication (PLC) systems. Unlike conventional NOMA-PLC schemes which deploy NOMA only at the relay, this paper proposes to enhance the performance of such systems by implementing the principle of NOMA at both the source and relaying modems. The system performance is evaluated in terms of the average sum capacity for which analytical expressions are derived for both the improved and conventional NOMA-PLC systems. Throughout our analysis, the PLC channel is assumed narrow-band modeled with log-normal amplitude distribution and the total PLC noise consists of both background and impulsive noise. Monte Carlo simulations are provided to corroborate the accuracy of our theoretical analysis. The derived expressions are utilized to examine the impact of various system parameters on the average capacity performance; this includes: impulsive noise probability, network branching, power allocation coefficients, and transmit power. The optimization problem of the power allocation coefficients is also addressed for both NOMA-PLC systems under consideration. Results reveal that significant gains in the average capacity can be attained with the improved NOMA-PLC approach compared to the conventional system. In addition, the improved system is able to meet a given performance requirement with smaller transmit power offering more relaxed electromagnetic compatibility issues associated with PLCs. Finally, it is demonstrated that optimizing the power allocation coefficients at both the source and relay modems is crucial to maximize performance. © 2013 IEEE.