Yazar "Abdi, Mohamed Artan" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Event or emergency case detection by human running(Springer, 2021) Abdi, Mohamed Artan; Turan, MetinRecognizing the difference between walking and running is certainly an essential part of standard sports activity classification. Moreover, that can be commented on a security problem in daily life. If someone is running on the street that may show something goes wrong. The purpose of this study is to recognize the everyday actions of the human, whether walking as regular movement or running in the case of emergency or event. In recent years, significant progress has been made in computer vision and machine learning. CNN, a deep learning algorithm for image processing was used for the model. The dataset, a thousand of images, of the study were collected from different sites of the internet or extracted from videos. Classify frequent human movements, whether a regular walk or running action, were separated by 86.85% success in the research.Öğe Event or emergency case detection by human running(İstanbul Ticaret Üniversitesi, 2021) Abdi, Mohamed Artan; Turan, MetinÖZET Spor, sosyal entegrasyon için temel bir gerekliliktir; diğer yandan güvenlik, çevrenin ihtiyaç duyduğu önemli hizmetlerden biridir. Bu çalışmanın amacı, ister spor yürüyüşü / düzenli hareket olarak koşma, ister acil veya olay durumunda koşma olsun, insanın günlük eylemlerini tanımaktır. İnsanın yürüme ve koşma gibi ortak eylemlerini sınıflandırmak, suçluların soruşturulmasında önemli bir rol oynayabilir. Bilgisayarla görme ve makine öğreniminde son yıllarda önemli ilerlemeler kaydedilmiştir. Model için görüntü işlemede derin öğrenme algoritması olan CNN kullanıldı. Araştırmanın veri seti, bin görsel, internetin farklı sitelerinden toplandı veya videolardan çıkarıldı. Düzenli bir yürüyüş veya koşma hareketi olsun, sık insan hareketlerini sınıflandıran araştırmada % 86. 85 başarı ile ayrıldı. Anahtar Kelimeler: CNN, Derin Öğrenme, Güvenlik Sistemi, İnsan Faaliyetleri, Suçluları Soruşturma. ABSTRACT Sport is the fundamental necessary of social integration; on another hand, security is one of the particular significant services that environmental need. The purpose of this study is to classify the everyday actions of the human, whether sport actions such walking and running as regular movement or running in the case of emergency or event. Classifying the common actions of the human such walking and running, it plays an important role of investigation criminals. Significant progress has been made in computer vision and machine learning recent years. CNN, a deep learning algorithm for image processing was used for the model. The dataset, a thousand of images, of the study were collected from different sites of the internet or extracted from videos. Classify frequent human movements, whether a regular walk or running action, were separated by 86. 85% success in the research. Keywords: CNN, Deep Learning, Human Activities, Investigation Criminals, Security System. İÇİNDEKİLER TABLE OF CONTENTS . i ABSTRACT . ii ÖZET . iii ACKNOWLEDGEMENT . iiv LIST OF FIGURES . v LIST OF TABLES . vi SYMBOLS AND ABBREVIATIONS LIST . vii 1. INTRODUCTION . 1 1. 1. Background of Machine learning . 1 1. 2. Proposed System . 2 1. 3. Brief Overview of Tools and Technics . 3 1. 3. 1. Dataset . 3 1. 3. 2. Appropriate algorithm . 4 1. 3. 3. Experimental tools . 5 2. LITERATURE REVIEW . 7 3. METHODOLOGY . 9 3. 1. Artificial Intelligence . 9 3. 2. Machine Learning . 10 3. 3. Deep Learning . 11 3. 4. Convolutional Neural Network (CNN) . 12 3. 5. Models . 13 3. 6. Data Collection and pre-processing . 14 3. 7. Image Representation . 15 3. 8. Data Representation . 15 3. 8. 1. Input layer . 16 3. 8. 2. Hidden layer . 17 3. 8. 3. Output layer . 18 3. 9. Implementation . 18 4. RESULT . 20 4. 1. First Experimental . 20 4. 2. Second Experimental . 22 4. 3. Third Experimental . 23 4. 4. Final Experimental . 25 4. 5. Experimental comparison . 27 4. 6. Limitations . 28 5. CONCLUSION . 29 REFERENCES . 30 APPENDIX . 34 Appendix A - Tensorflow Libraries . 30 Appendix B - Loading data to system . 36 Appendix C - Training process . 37 Appendix D – Output Structure . 38 CURRICULUM VITAE . 39