Patterson, Richard F.Savaş, Ekrem2015-09-142015-09-1420081025-5834https://hdl.handle.net/11467/1184http://dx.doi.org/10.1155/2008/948195We will examine double sequence to double sequence transformation of independent identically distribution random variables with respect to four-dimensional summability matrix methods. The main goal of this paper is the presentation of the following theorem. If max(k,l)vertical bar a(m,n,k,l) vertical bar = max(k,l)vertical bar a(m,k)a(n,l)vertical bar = O(m(-gamma 1))O(n(-gamma 2)) gamma(1),gamma(2) > 0, then E vertical bar X vertical bar(1+1/gamma 1) < infinity and E vertical bar X vertical bar(1+1/gamma 2) < infinity imply that Y(m,n) -> mu almost sure P- convergence.eninfo:eu-repo/semantics/openAccessSummability of double independent random variablesArticle112Q2WOS:000259492500001Q22-s2.0-5294910055810.1155/2008/948195