Alaca, OzgurAlthunibat, SaudYarkan, SerhanMiller, Scott L.Qaraqe, Khalid A.2023-11-072023-11-072023https://hdl.handle.net/11467/6929https://doi.org/10.1109/TVT.2023.3272357Index modulation-based orthogonal division multiple access (IM-OFDMA) has recently been proposed as a potential technique for future wireless communication systems due to its su perior spectral efficiency and error performance over conventional multiple access schemes. However, its performance is still under investigation by researchers in light of a variety of scenarios and assumptions. Following this direction, in this Article, the individual and joint effects of the transmitter (Tx) and receiver (Rx) in-phase and quadrature imbalances (IQI) on the bit-error-rate (BER) per formance of the uplink IM-OFDMA scheme are investigated by considering whether each user’s RF front-end is identical or not. Moreover, to reduce the detrimental effect of IQI, a preamble-based estimation and compensation method is proposed for IM-OFDMA. Closed-form expressions for the average BER of IM-OFDMA are obtained by considering the physical effect of the Tx and Rx IQI. Also, using Monte Carlo simulations, the derived expressions are verified under different system configurations. Analytical and sim ulation results reveal that Tx and Rx IQI cause an error floor in the BER performance of IM-OFDMA schemes. However, the proposed estimation and compensation method not only reduces the impact of IQI but also leads to a better BER performance compared to the case of no IQI, which mainly refers to the frequency diversity caused by the IQI.eninfo:eu-repo/semantics/embargoedAccessMultiple access, IM-OFDMA, IQ imbalance, estimation and compensationAnalysis and Compensation of Tx and Rx IQ Imbalances in Uplink IM-OFDMA SystemsArticle72101295612969Q1WOS:001098049700038N/A2-s2.0-8515983497310.1109/TVT.2023.3272357