Patterson, Richard F.Savaş, Ekrem2020-11-212020-11-2120131683-35111683-6154https://hdl.handle.net/11467/4035This paper examines real factorable double sequences of random variables via fourdimensional matrix transformation. These transformations are used to present Pringsheim limit theorems and matrix characterizations of complete P-convergence. To accomplish this, we have, present a four dimensional weighted mean characterization of Sigma(m,n) P{vertical bar U-m,U-n - E(X)vertical bar >= epsilon} < infinity where U-m,U-n Sigma(m,n)(k,l-1,1) a(m.n,k,l)X(k,l,i;) m,n >= 1,1 is the four-dimensional triangular transformation k,1=1,1 of the double sequence [X(k,)l(1)] of random variables. Keywords: P-convergent, P-divergent, RH-regular.eninfo:eu-repo/semantics/closedAccessP-convergentP-divergentRH-regularMATRIX CHARACTERIZATION OF P-LIMIT THEOREMS AND COMPLETE P-CONVERGENCEArticle123373380Q3WOS:000326554500010